

Journal of Organometallic Chemistry 571 (1998) 289-295

Journal ofOrgano metallic Chemistry

Preparation and crystal structures of $[\mu$ -SbPh₂]₂[Mo(CO)₂(η ⁵-C₅H₅)]₂·CHCl₃ and SbPh[Fe(CO)₂(η ⁵-C₅H₅)]₂

Martin N. Gibbons, D. Bryan Sowerby *

Department of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK

Received 17 June 1998

Abstract

Antimony is reduced when $[SbPh_2BrO]_2$ is treated with $Na[Mo(CO)_3(\eta^5-C_5H_5)]$ to produce $[\mu$ -SbPh_2]_2[Mo(CO)_2(\eta^5-C_5H_5)]_2. A structure determination shows diphenylstibido groups bridging between two $Mo(CO)_2(\eta^5-C_5H_5)$ moieties giving a central 'butterfly' shaped Sb₂Mo₂ ring. The cyclopentadiene rings are *trans* to each other and Mo-Sb and Sb-Sb separations are both short. An iron analogue could not be obtained from $[SbPh_2BrO]_2$ and $Na[Fe(CO)_2(\eta^5-C_5H_5)]$ but a mixture of SbPh[Fe(CO)_2(\eta^5-C_5H_5)]_2 and SbPh_2[Fe(CO)_2(\eta^5-C_5H_5)]_2 and SbPh_2[Fe(CO)_2(\eta^5-C_5H_5)]_2 shows an open stibinidine structure. © 1998 Elsevier Science S.A. All rights reserved.

Keywords: Antimony; Cyclopentadiene; Stibinidine

1. Introduction

Low oxidation state transition metal moieties readily bond to ligands containing Group 15 elements with phosphorus and arsenic compounds being the most widely investigated. Although fewer antimony analogues are known, there are examples of coordination by tertiary stibines, e.g. Fe(CO)₄(SbPh₃) [1] and bridging by either distibines, e.g. $[Cr(CO)_5]_2(\mu_2-Sb_2Ph_4)$ [2] or oxo-distibines, e.g. $[Ni(CO)_2]_2(\mu_2-SbPh_2OSbPh_2)_2$ [3]. SbR₂ and SbR fragments and even naked antimony atoms can bridge between 17-e⁻ fragments giving products such as SbR₂[Fe(CO)₂(η^{5} -C₅H₅)], where R = Me or Br, [4], SbCl[M(CO)_n(η^{5} -C₅H₅)]₂, where M = Mo or W, n = 3 and M = Fe, n = 2 [5], SbMe[Fe(CO)₂(η^{5} - C_5H_5]₂ [6] and Sb[Re(CO)₅]₃ [7]. 'Open' and 'closed', i.e. containing an additional M-M bond, tautomeric forms are known for $SbR[ML_n]_2$ compounds. Antimony species, such as Sb_2 and RSb = SbR, are unknown as free entities but can be stabilised in complexes such as $[Mo(CO)_2(\eta^5-C_5H_5)]_2(\mu,\eta^2-Sb_2)$ [8] and $[SbBu'=SbBu'][Cr(CO)_5]_3$ [9]. This general area has been reviewed recently [10].

There are few compounds containing antimony in a higher oxidation state and such species may be rare in view of the reducing conditions provided by the transition metal species used. Two compounds that have been isolated are SbMe₂Cl₂[Fe(CO)(PMe₃)(η^{5} -C₅H₅)] [11] and SbRf₂[Fe(CO)₂(η^{5} -C₅H₅)], where Rf = $o - C_6 H_4 C(CF_3)_2 O_{-}$ [12] and it is interesting that solutions of $(\mu$ -Sb₂)[Co(CO)₂PR₃]₂, where R = Ph or ptolyl, can be oxidised to [SbO(OH)][Co(CO)₃(PR₃)]₂, a further higher oxidation compound containing a ligand unknown as a free entity [13]. As higher oxidation state antimony fragments have been stabilised in low oxidation state transition metal complexes and in the hope of preparing further examples, we have examined reactions of [SbPh₂BrO]₂, which contains a stable Sb₂O₂ ring with, initially, Na[Mo(CO)₃(η^{5} -C₅H₅)] and Na[Fe(CO)₂(η^{5} -C₅H₅)].

^{*} Corresponding author. Fax: +44 115 9513563.

Fig. 1. Structure of $[\mu$ -SbPh₂]₂[Mo(CO)₂(η ⁵-C₅H₅)]₂ 1 showing the atom numbering scheme.

2. Results and discussion

2.1. $[\mu$ -SbPh₂]₂[Mo(CO)₂(η ⁵-C₅H₅)]₂ (1)

The simplest possible reaction between the antimony(V) compound [SbPh₂BrO]₂ and 2 mol Na[Mo(CO)₃(η^{5} -C₅H₅)] would be metathesis to give {SbPh₂O[Mo(CO)₃(η^{5} -C₅H₅)]}₂ and sodium bromide. Perhaps not surprisingly, this does not occur and antimony is reduced giving among others a purple compound identified as [μ -SbPh₂]₂[Mo(CO)₂(η^{5} -C₅H₅)]₂ **1**. Although the compound was prepared under Schlenk conditions, it appears to be indefinitely stable in the atmosphere.

In addition to phenyl and cyclopentadienyl bands, its IR spectrum in Nujol showed strong CO absorptions at 1924, 1870, 1857 and 1846 cm⁻¹, consistent with terminal CO groups. In CH₂Cl₂ solution strong bands at 1929 and 1866 cm⁻¹ with a shoulder at 1946 cm⁻¹ suggest the presence of Mo(CO)₂ groups, with solid state effects probably accounting for the extra bands in Nujol. The CH₂Cl₂ spectrum was comparable with those of [Mo(CO)₂(η^{5} -C₅H₅)]₂(μ , η^{2} -Sb₂) (1936 and 1885 cm⁻¹, CH₂Cl₂ solution) [8] and [Mo(CO)₂(η^{5} -C₅H₅)]₂(μ , η^{2} -Bi₂) (1917 and 1866 cm⁻¹, THF solution) [14], each containing two Mo(CO)₂(η^{5} -C₅H₅) fragments in common with **1**. The presence of the 1946 cm⁻¹ shoulder for **1** points to greater complexity and the possibility of more than one species in solution.

The presence of two solution species is supported by differences in the proton NMR spectra of 1 in C_6D_6 and CDCl₃ solutions. The C_6D_6 spectrum was fully assignable with a singlet at 4.90 ppm for the cyclopentadienyl protons and multiplets at 7.23 (m- and p-) and 7.76 (o-) for the phenyl protons. In CDCl₃, on the other hand, there were two cyclopentadienyl singlets at 5.16 and 5.32 ppm in a 4:1 ratio and the distinct separation of the o- and m- and p-phenyl resonances in C_6D_6 solution collapsed in CDCl₃ to a multiplet at 7.20-7.60 ppm. Compound 1 could, however, be recovered quantitatively from CDCl₃ solution and the two sets of signals are possibly associated with cis-trans isomerism at the molybdenum centres. The solid state structure of 1 (see below) shows a basic *trans* configuration at molybdenum and this is probably the form present in C₆D₆.

A FAB mass spectrum confirmed the molecular formula with a parent ion peak at m/z 988 while loss of 2CO gave a peak at m/z 932. Monoantimony fragments, i.e. [SbPh₂Mo₂Cp₂(CO)₃]⁺ (m/z 685) and [SbPh₂MoCp]⁺ (m/z 438), were observed also and there was substantial intensity for the rearrangement ion, [SbPh₂MoCp(CO)₃]⁺, at m/z 522.

The structure of **1** as a chloroform solvate was determined by X-ray crystallography and a diagram is shown in Fig. 1. Selected bond lengths and angles are given in Table 1. The compound contains a 'butterfly'-

type Sb₂Mo₂ core, with diphenylstibido fragments bridging between 15-e⁻ Mo(CO)₂(η^{5} -C₅H₅) moieties. Both Sb-Mo [2.760(1)-2.796(1) Å] and Sb-Sb [3.0996(8) Å] separations are short; the former may imply a degree of Sb-Mo multiple bonding as the SbPh₂ units behave as 3-e⁻ donors. The Sb-Mo distances are comparable with those in the stibine complex, Mo(CO)₃[Ph₂(PhS)Sb]₃ [mean 2.746 Å] [15], in [Mo(CO)₂(η^{5} -C₅H₅)]₂(μ , η^{2} -Sb₂) [2.762 Å] [8] and (μ -Sb)₂Mo₅(CO)₁₄(η^{5} -C₅H₅)₄ [2.764 Å] [16].

The Sb–Sb separation [3.0996(8) Å] is longer than those in *cyclo*-(PhSb)₆ (2.837 Å) [17] and [(Me₃Si)₂Sb]₂ (2.867 Å) [18] but is comparable with that in (μ -Sb)₂Mo₅(CO)₁₄(η ⁵-C₅H₅)₄ [3.050 Å] [16]. It is difficult to know if this is a real bond or simply a consequence of constraints within the Sb₂Mo₂ ring. The Mo(1)···Mo(2) separation [4.405(1) Å], on the other hand, implies no bonding between these atoms.

Coordination about antimony is distorted tetrahedral with angles ranging between 104.46(3) [Mo(1)–Sb(1)–Mo(2)] and 117.5(3)° [Mo(2)–Sb(1)–C(21)]; bonds to the phenyl *ipso* carbons [2.141(9)–2.16(1) Å] are unexceptional. Each molybdenum atom is attached to an η^{5} -cyclopentadienyl group and two carbonyl ligands, giving overall 'four-legged piano-stool' geometry, with distances to the carbonyl carbons [1.94(1)–1.96(1) Å]

Table 1

Selected bond distances (Å) and angles (°), with estimated S.D.s in parentheses, for $[\mu$ -SbPh₂]₂[Mo(CO)₂(η ⁵-C₅H₅)]₂ ·CHCl₃ (1)

Sb(1)…Sb(2)	3.0996(8)	Mo(1)-Sb(1)-Mo(2)	104.46(3)
Sb(1)–Mo(1)	2.796(1)	Mo(1)-Sb(1)-C(11)	114.6(3)
Sb(1)–Mo(2)	2.777(1)	Mo(2)-Sb(1)-C(11)	113.9(3)
Sb(1)–C(11)	2.141(9)	Mo(1)-Sb(1)-C(21)	114.4(3)
Sb(1)–C(21)	2.16(1)	Mo(2)-Sb(1)-C(21)	117.5(3)
Sb(2)-Mo(1)	2.774(1)	C(11)-Sb(1)-C(21)	92.3(4)
Sb(2)-Mo(2)	2.760(1)	Mo(1)-Sb(2)-Mo(2)	105.51(3)
Sb(2)–C(31)	2.152(9)	Mo(1)-Sb(2)-C(31)	116.8(3)
Sb(2)–C(41)	2.151(9)	Mo(2)-Sb(2)-C(31)	114.5(3)
Mo(1)–C(1)	1.94(1)	Mo(1)-Sb(2)-C(41)	109.9(3)
Mo(1)–C(2)	1.94(1)	Mo(2)-Sb(2)-C(41)	115.9(3)
Mo(1)–C(51)	2.34(1)	C(31)-Sb(2)-C(41)	94.3(3)
Mo(1)–C(52)	2.29(1)	Sb(1)-Mo(1)-Sb(2)	67.63(2)
Mo(1)-C(53)	2.26(1)	Sb(1)-Mo(1)-C(1)	116.6(3)
Mo(1)-C(54)	2.27(1)	Sb(2)-Mo(1)-C(1)	76.9(3)
Mo(1)-C(55)	2.30(1)	Sb(1)-Mo(1)-C(2)	75.4(3)
Mo(1)-Cp _{cent}	2.00	Sb(2)-Mo(1)-C(2)	114.8(3)
Mo(2)–C(3)	1.96(1)	C(1)-Mo(1)-C(2)	74.4(4)
Mo(2)–C(4)	1.94(1)	Sb(1)-Mo(2)-Sb(2)	68.09(3)
Mo(2)–C(61)	2.29(1)	Sb(1)-Mo(2)-C(3)	79.2(4)
Mo(2)-C(62)	2.31(1)	Sb(2)-Mo(2)-C(3)	121.9(3)
Mo(2)–C(63)	2.36(1)	Sb(1)-Mo(2)-C(4)	122.7(4)
Mo(2)-C(64)	2.36(1)	Sb(2)-Mo(2)-C(4)	79.2(3)
Mo(2)–C(65)	2.32(1)	C(3)-Mo(2)-C(4)	80.2(5)
Mo(2)-Cp _{cent}	2.00	Mo(1)-C(1)-O(1)	176.0(9)
O(1)–C(1)	1.17(1)	Mo(1)-C(2)-O(2)	175.0(10)
O(2)–C(2)	1.15(1)	Mo(2)-C(3)-O(3)	176.6(11)
O(3)–C(3)	1.15(1)	Mo(2)-C(4)-O(4)	178.2(11)
O(4)–C(4)	1.17(1)		

and to the centroid of the Cp rings [2.00 Å] comparable with those in related compounds. A view down the Sb...Sb vector (see Fig. 2) shows that the Cp rings are arranged in a near *trans* configuration.

The overall structure closely resembles that of $Cu_2(PMe)_4[\mu-(mesityl)_2Sb]_2$ [19], where diarylstibido groups again bridge between related 15-e⁻ metal fragments. Antimony coordination geometry is similar in the two cases, although the M–Sb–M angle in 1 is considerably more'open' [mean 104.99°] than in the copper compound [mean 95.11°].

Although the mechanism of formation of **1** is not known, a possible route is via $SbPh_2[Mo(CO)_3(\eta^{5}-C_5H_5)]$ **2** followed by CO loss and dimerisation. Similar reactions, i.e. loss of CO and phosphine, respectively, from AsMe₂[Mo(CO)₃($\eta^{5}-C_5H_5$)] [20,21] and AsMe₂[Mo(CO)₂(PR₃)($\eta^{5}-C_5H_5$)]₂ [22] followed by dimerisation, both give [μ -AsMe₂]₂[Mo(CO)₂($\eta^{5}-C_5H_5$)]₂.

An attempt to prepare **2** by treating SbPh₂Cl with Na[Mo(CO)₃(η^{5} -C₅H₅)] in THF gave an inseparable mixture but ¹H-NMR spectra pointed to SbPh₂[Mo(CO)₃(η^{5} -C₅H₅)] **2** as the probable major component. A related reaction between SbPh₂Cl and Na[W(CO)₃(η^{5} -C₅H₅)] also gave an inseparable mixture, with probably SbPh₂[W(CO)₃(η^{5} -C₅H₅)] **3** as the major product from ¹H-NMR and FAB mass spectrometry.

2.2. $SbPh[Fe(CO)_2(\eta^5-C_5H_5)]_2$ (4) and $SbPh_2[Fe(CO)_2(\eta^5-C_5H_5)]$ (5)

The reaction of $[SbPh_2BrO]_2$ with 2 mol Na[Fe(CO)₂(η^{5} -C₅H₅)] did not yield the iron analogue of **1** and gave only unidentified products, but with SbPh₂Cl Na[Fe(CO)₂(η^{5} -C₅H₅)] gave a mixture of SbPh[Fe(CO)₂(η^{5} -C₅H₅)]₂ **4** and SbPh₂[Fe(CO)₂(η^{5} -C₅H₅)] **5**. The compounds could not be separated by fractional crystallisation and were characterised spectroscopically as the mixture. The crystal structure of **4** was, however, determined using well formed crystals, separated manually from the mixture.

At first sight, it is surprising that a mixture of products is obtained from this reaction, when good yields of SbMe₂Fe(CO)₂(η^{5} -C₅H₅) and SbBr₂Fe(CO)₂(η^{5} -C₅H₅) result from related reactions between SbMe₂Br or SbBr₃ with Na[Fe(CO)₂(η^{5} -C₅H₅)] [4]. Phenyl groups on antimony are, however, known to be labile [23] and [Ni₁₀(SbPh)₂(CO)₁₈]²⁻, for example, is the major product when SbPh₂Cl is treated with [Ni₆(CO)₁₂]²⁻ [3].

Both 4 and 5 contain only terminal CO groups (bands at 1995, 1977 and 1946 cm⁻¹) from IR spectroscopy in THF solution and there were ¹H-NMR signals (C_6D_6 solution) at 4.35 (s, C_5H_5), 7.27 (m, *m*- and *p*-Ph) and 8.19 (d, *o*-Ph) for 4 and at 4.12 (s, C_5H_5), 7.27 (m, *m*- and *p*-Ph) and 7.92 (d, *o*-Ph) for 5.

Fig. 2. Structure of $[\mu$ -SbPh₂]₂[Mo(CO)₂(η ⁵-C₅H₅)]₂ 1 projected down the Sb···Sb vector.

The stoichiometry of the compounds was confirmed by EI mass spectrometry which showed parent ion peaks for both species. Low intensity peaks also indicated the successive loss of all four CO molecules from 4 and for 5, there was a peak associated with loss of two CO molecules. The most intense peaks were assigned to fragments common to both compounds, i.e. $CpFe(CO)_2^+$, $CpFe(CO)^+$ and $CpFe^+$, together with $SbPh^+$ and $SbPh_2^+$, respectively, for 4 and 5. The X-ray structure of **4**, shown in Fig. 3, consists of a phenylstibinidene fragment bridging between two 17e⁻ CpFe(CO)₂ units. Selected bond lengths and angles are listed in Table 2. The geometry at antimony is pyramidal with angles ranging between 98.7(2) [C(1)–Sb(1)–Fe(1)] and 111.96(5)° [Fe(1)–Sb(1)–Fe(2)] and

Table 2

Selected bond distances (Å) and angles (°), with estimated S.D.s in parentheses, for SbPh[Fe(CO)₂(η^{5} -C₅H₅)]₂ (4)

Sb(1)- $Fe(1)$	2 639(2)	Fe(1) = Sb(1) = Fe(2)	111.96(5)
Sb(1) - Fe(2)	2.039(2)	C(1)-Sb(1)-Fe(1)	98 7(2)
Sb(1) - C(1)	2.031(1) 2177(9)	C(1) = Sb(1) = Fe(2)	102.2(3)
Fe(1)-C(12)	1.74(1)	C(12) - Fe(1) - C(13)	95 1(5)
Fe(1) - C(13)	1 737(8)	C(12) - Fe(1) - Sb(1)	84 8(3)
Fe(1)-C(7)	2.10(1)	C(13)-Fe(1)-Sb(1)	89.9(3)
Fe(1)-C(8)	2.07(1)	C(19) - Fe(2) - C(20)	94.7(4)
Fe(1)-C(9)	2.12(1)	C(19)-Fe(2)-Sb(1)	86.3(3)
Fe(1)-C(10)	2.11(1)	C(20)-Fe(2)-Sb(1)	91.9(3)
Fe(1)-C(11)	2.09(1)	O(1)-C(12)-Fe(1)	176.0(11)
Fe(1)-Cp _{cent}	1.73	O(2)-C(13)-Fe(1)	174.3(8)
Fe(2)–C(19)	1.75(1)	O(3)-C(19)-Fe(2)	177.0(9)
Fe(2)-C(20)	1.75(1)	O(4)-C(20)-Fe(2)	177.0(8)
Fe(2)-C(14)	2.12(1)		
Fe(2)-C(15)	2.10(1)		
Fe(2)-C(16)	2.09(1)		
Fe(2)-C(17)	2.097(9)		
Fe(2)-C(18)	2.08(1)		
Fe(2)-Cp _{cent}	1.73		
O(1)–C(12)	1.15(1)		
O(2)–C(13)	1.140(9)		
O(3)–C(19)	1.16(1)		
O(4)–C(20)	1.14(1)		

Fig. 3. Structure of SbPh[Fe(CO)_2(η^5 -C₅H₅)]₂ 4 showing the atom numbering scheme.

the sum of angles [312.86°] points to a more closed arrangement than that in Sb[Fe(CO)₂(η^{5} -C₅H₅)]₃ [5]. Sb–Fe lengths are identical (mean 2.637 Å) and are comparable with the single bonds in Sb[Fe(CO)₂(η^{5} -C₅H₅)]₃ [mean 2.652 Å] [5] and {SbCl[Fe(CO)₂(η^{5} -C₅H₅)]₃)₂[FeCl₄] [mean 2.539 Å] [24].

The overall arrangement at iron is the familiar CpML₃ 'three-legged piano stool', with identical Fe–C(O) [1.737(8) – 1.75(1) Å] and Fe–Cp_{cent} [1.73 Å] separations and the *trans* orientation of the cyclopentadienyl rings is similar to that in SbCl[Mo(CO)₃(η^{5} -C₅H₅)]₂ [5]. There is a difference in the phenyl group orientation with respect to the two Sb–Fe bonds from C(2)–C(1)–Sb(1)–Fe(1) and C(2)–C(1)–Sb(1)–Fe(2) torsion angles of – 81.0(8) and 33.9(9)°, respectively.

3. Experimental

All reactions were carried out using Schlenk techniques under an argon atmosphere and the products were subsequently handled in a dry oxygen-free glovebox.

3.1. Preparation of $[\mu - SbPh_2]_2[Mo(CO)_2(\eta^5 - C_5H_5)]_2 \cdot CHCl_3$ (1)

A solution of sodium cyclopentadienylide (528 mg, 4.26 mmol) in THF (40 ml) was added to molybdenum hexacarbonyl (1.142 g, 4.33 mmol) in THF (40 ml) and the resulting solution refluxed with stirring for 18 h (CARE CO evolution). After cooling, the pale yellowgreen solution was added to a stirred slurry of [SbPh₂BrO]₂ (1.580 g, 2.12 mmol) in THF (50 ml) at -80° C. The reaction mixture, after warming to room temperature (r.t.) and stirring for a further 24 h, was filtered and evaporated to dryness in a vacuum. The remaining solid then extracted was into dichloromethane (50 ml), the solution filtered and again evaporated to dryness to give a purple solid. Pure 1 was obtained by column chromatography (CH₂Cl₂/hexane 2:5 v/v, Al_2O_3). Yield 250 mg (12% based on [SbPh₂BrO]₂). M.p. 259–262°C (dec.). ¹H-NMR (250 MHz, C₆D₆, r.t.): δ 4.90 (10H, s, Cp-Mo), 7.23 (12H, m, m- and p-Ph), 7.76 (8H, m, o-Ph). ¹H-NMR (250 MHz, CDCl₃, r.t.): δ 5.16 (10H, s, Cp-Mo major isomer), 5.32 (10H, s, Cp-Mo minor isomer), 7.32 (20H, m, *Ph*-Sb both isomers). IR (CH₂Cl₂ solution): 1946m,sh, 1929vs, 1866m,br cm⁻¹. IR (nujol mull, CsI): 1924vs, 1870m, 1857s, 1846s, 1431m, 1062w, 1019w, 819w, 736w, 728w, 696w, 556w, 549w, 449w cm⁻¹. MS (FAB, m/z > 400), m/z (rel. int.(%)): 988 $(Sb_2Ph_4Mo_2Cp_2(CO)_4^+, 6), 932 (Sb_2Ph_4Mo_2Cp_2(CO)_2^+, 6)$ 7), 876 (Sb₂Ph₄Mo₂Cp₂⁺, 2), 685 (SbPh₂Mo₂Cp₂(CO)₃⁺, 6), 522 (SbPh₂MoCp(CO)₃⁺, 18), 438 (SbPh₂MoCp⁺, 14). Found: C, 46.0; H, 3.2: C₃₈H₃₀O₄Mo₂Sb₂ Calc.: C, 46.3; H, 3.1%

3.2. Reaction between $SbPh_2Cl$ and $Na[Mo(CO)_3(\eta^5-C_5H_5)]$

A solution of Na[Mo(CO)₃(η^{5} -C₅H₅)] prepared as above from NaCp and molybdenum hexacarbonyl (1.923 g, 7.28 mmol) in THF (35 ml) was added to a stirred solution of SbPh₂Cl (2.187 g, 7.02 mmol) in THF (25 ml) at -45° C giving an immediate purple colouration. After stirring for a further 24 h at r.t., the mixture was filtered through Celite and evaporated to dryness giving an oily red product. Crystallisation from toluene gave a red powder which spectroscopy showed was a mixture of compounds that could not be separated by recrystallisation; the major component was considered to be SbPh₂[Mo(CO)₃(η^{5} -C₅H₅)] **2**. ¹H-NMR (C₆D₆, 250 MHz, r.t.): δ 4.78 (5H, s, *Cp*-Mo), 7.21 (6H, m, *m*- and *p*-Ph), 7.80 (4H, m, *o*-Ph).

3.3. Reaction between $SbPh_2Cl$ and $Na[W(CO)_3(\eta^5-C_5H_5)]$

A solution of NaCp (847 mg, 7.23 mmol) in diglyme (40 ml) was added to tungsten hexacarbonyl (2.544 g, 7.23 mmol) in diglyme (40 ml) and the mixture stirred under reflux for 18 h. The Na[W(CO)₃(η^{5} -C₅H₅)] thus formed was added to a stirred solution of SbPh2Cl (2.227 g, 7.15 mmol) in THF (20 ml) at -65° C and the mixture slowly warmed to r.t. and stirred for a further 16 h. Insolubles were filtered off through Celite and the solvent removed in a vacuum. ¹H-NMR spectroscopy showed that the product was a mixture that could not be separated by recrystallisation; the major component was considered to be SbPh₂[W(CO)₃(η^{5} -C₅H₅)] **3**. ¹H-NMR (C₆D₆, 250 MHz, r.t.): δ 4.66 (s, 5H, Cp-W), 7.27 (6H, m, *m*- and *p*-Ph), 7.84 (4H, d, ${}^{3}J_{HH} = 7.5$ Hz, o-Ph). IR (CH₂Cl₂ solution): 2027m, 1995s, 1933vs,br, 1889s cm⁻¹. MS (FAB), m/z (rel. int.(%)): 608 (SbPh₂WCp(CO)₃⁺, 2), 580 (SbPh₂WCp(CO)₂⁺, 8), 524 (SbPh₂WCp⁺, 11), 503 (SbPhWCp(CO)₂⁺, 32), 447 (SbPhWCp⁺, 37), 275 (SbPh₂⁺, 53), 198 (SbPh⁺, 18).

3.4. Reaction between $SbPh_2Cl$ and $Na[Fe(CO)_2(\eta^5-C_5H_5)]$

Na[Fe(CO)₂(η^{5} -C₅H₅)] was prepared by adding a slurry of [Fe(CO)₂(η^{5} -C₅H₅)]₂ (1.393 g, 3.94 mmol) and THF (30 ml) to sodium amalgam (37 g, 0.593% w/w, 8.7 mmol Na) and the mixture stirred for 48 h. The resulting solution was filtered into a solution of SbPh₂Cl (2.392 g, 7.68 mmol) in THF (50 ml) at -80° C and the mixture stirred at r.t. for 24 h. After filtration through Celite, the solution was reduced to ca. 10 ml and overlayered with hexane (30 ml) to give, after 3 days at -30° C, crystals shown spectroscopically to be a mixture of SbPh[Fe(CO)₂(η^{5} -C₅H₅)]₂ **4** and SbPh₂[Fe(CO)₂(η^{5} -C₅H₅)] **5**. Attempts to separate the

compounds by recrystallisation were unsuccessful and they were characterised as the mixture. Yield 2.03 g. IR (THF solution, mixture): 1995vs, 1977m, 1946vs cm⁻¹.

SbPh[Fe(CO)₂(η^{5} -C₅H₅)]₂ 4: ¹H-NMR (250 MHz, C₆D₆, r.t.): δ 4.35 (10H, s, *Cp*-Fe), 7.27 (3H, m, *m*- and *p*-Ph), 8.19 (2H, d, ³J_{HH} = 6.5 Hz, *o*-Ph). MS (EI), *m/z* (rel. int.(%)): 552 (SbPhFe₂Cp₂(CO)₄⁺, 3), 524 (SbPhFe₂Cp₂(CO)₃⁺, 0.5), 496 (SbPhFe₂Cp₂(CO)₂⁺, 1), 468 (SbPhFe₂Cp₂(CO)⁺, 1), 440 (SbPhFe₂Cp₂(CO)₂⁺, 3), 198 (SbPh⁺, 22), 177 (FeCp(CO)₂⁺, 22), 149 (FeCp(CO)⁺, 21), 121 (FeCp⁺, 100), 77 (Ph⁺, 9), 56 (C₂O₂⁺, 41). SbPh₂[Fe(CO)₂(η^{5} -C₅H₅)] **5**: ¹H-NMR (250 MHz, C₆D₆, r.t.): δ 4.12 (5H, s, *Cp*-Fe), 7.27 (6H, m, *m*- and *p*-Ph), 7.92 (4H, d, ³J_{HH} = 6.2 Hz, *o*-Ph). MS (EI), *m/z* (rel. int.(%)): 452 (SbPh₂FeCp(CO)₂⁺, 3), 396 (SbPh₂FeCp⁺, 18), 275 (SbPh₂⁺, 11) and Fe/Cp/CO as for **4**.

3.5. Crystal structure determinations for $[\mu$ -SbPh₂]₂[Mo(CO)₂(η ⁵-C₅H₅)]₂.CHCl₃ (1) and SbPh[Fe(CO)₂(η ⁵-C₅H₅)]₂ (4)

Crystals of 1 suitable for X-ray crystallography were obtained by slow diffusion of hexane into a concentrated chloroform solution and crystals of 4 were hand picked from the mixture. Crystal data and details of the structure solutions are summarised in Table 3. For 1, data were collected on a Hilger and Watts Y290 diffractometer and corrected for Lorentz and polarisation effects and for absorption (DIFABS) [25]. The structure was solved by Patterson and Fourier difference syntheses and refined using the CRYSTALS programs [26]. Hydrogen atoms were placed at calculated positions [d(C-H) 1.0 Å] and refined with fixed isotropic thermal parameters, riding on the attached carbon atom. The chloroform molecule was disordered.

For 4, slightly more than one hemisphere of data was collected on a Delft Instruments FAST TV area detector diffractometer, equipped with a rotating anode FR591 generator [27]. The data were corrected for Lorentz and polarisation effects and for absorption (Ψ -scans). The structure was solved by direct methods (SHELXS-86) [28] and Fourier difference syntheses and refined on F_o^2 by full-matrix least-squares using all unique data (SHELXL-93) [29]. Hydrogen atoms were placed at calculated positions [d(C-H) 0.95 Å] and refined with fixed isotropic thermal parameters, riding on the attached carbon atom.

4. Supplementary material available

Full details of the atomic parameters and bond lengths and angles have been deposited with the Cambridge Crystallographic Data Centre. Table 3 Crystallographic data for compounds 1 and 4

Compound	1	4
Chemical formula	$C_{39}H_{31}Cl_3Mo_2O_4Sb_2$	C ₂₀ H ₁₅ Fe ₂ O ₄ Sb
Formula weight	1105.4	552.8
Crystal size (mm)	$0.45 \times 0.25 \times 0.20$	$0.50 \times 0.40 \times 0.20$
Crystal system	Monoclinic	Orthorhombic
Space group	$P2_{1}/c$	$Pca2_1$
a (Å)	14.662(3)	18.003(4)
$b(\mathbf{A})$	14.896(3)	7.634(2)
c (Å)	18.759(4)	14.521(3)
β(°)	107.54(1)	90
Volume $(Å^3)$	3906.5	1995.7
Z	4	4
D_{cala} (g cm ⁻³)	1.880	1.840
Radiation (Å)	Mo-K. (0.71069)	Mo-K. (0.71069)
μ (cm ⁻¹)	22.36	28.00
F(000)	2136	1080
θ limits (°)	2-25	2-30
Index ranges (for	-15 < h < 14 0 <	-1 < h < 25 $0 < k <$
unique data)	k < 15, 0 < l < 19	10, 0 < l < 20
Temperature (K)	298	298
Total data collected	5059	3215
Unique data	5059	3001
R.	0.009	0.0593
Absorption correc-	DIFABS	Numerical
tion	DITTIDO	i vullioriour
Min	0.885	0 406
Max	1 116	0.956
Structure solution	Patterson	Direct methods
Structure solution	(SHELXS-86)	(SHELXS-86)
Refinement	Full-matrix least-	Full-matrix least-
Reinfellent	squares on F	squares on F^2
Data/variables	4028/432	2945/245
Goodness-of-fit (S)	1 038	0.848
Final diff man (e	$\pm 2.08 - 1.50$	$\pm 0.80 - 1.666$
\mathring{A}^{-3}	+2.08, -1.50	+0.30, -1.000
<i>R</i> observed data $[I > 2\sigma(I)]$	0.0488	0.0340
$R_{\rm w}$ all data	0.0542	0.258

Acknowledgements

We thank Professor M.B. Hursthouse and the EP-SRC Crystallographic Service for X-ray data collection on **4**.

References

- R.F. Bryan, W.C. Schmidt Jr., J. Chem. Soc. Dalton Trans. (1974) 2337.
- [2] J. von Seyerl, G Huttner, Cryst. Struct. Comm. 9 (1980) 1099.
- [3] R.E. DesEnfants II, J.A. Gavney Jr., R.K. Hayashi, A.D. Rae, L.F. Dahl, A. Bjarnason, J. Organomet. Chem. 383 (1990) 543.
- [4] P. Panster, W. Malisch, Chem. Ber. 109 (1976) 692.
- [5] A.M. Barr, M.D. Kerlogue, N.C. Norman, P.W. Webster, L. Farrugia, Polyhedron 8 (1989) 2495.
- [6] W. Malisch, P. Panster, Chem. Ber. 108 (1975) 700.
- [7] N.A. Compton, R.J. Errington, G.A. Fisher, et al., J. Chem. Soc. Dalton Trans. (1991) 669.
- [8] J.R. Harper, A.L. Rheingold, J. Organomet. Chem. 390 (1990) C36.

- [9] U. Weber, G. Huttner, O. Steidsteger, L. Zsolnai, J. Organomet. Chem. 289 (1985) 357.
- [10] K.H. Whitmire, in: N.C. Norman (Ed.), Chemistry of Arsenic, Antimony and Bismuth, Blackie, Glasgow, 1998, Ch. 7.
- [11] W. Malisch, H.-A. Kaul, E. Gross, U. Thewalt, Angew. Chem. Int. Ed. Engl. 21 (1982) 549.
- [12] Y. Yamamoto, M. Okazaki, Y. Makisaka, K.-Y. Akiba, Organometallics 14 (1995) 3364.
- [13] W. Clegg, N.A. Compton, R.J. Errington, D.C.R. Hockless, N.C. Norman, M. Ramshaw, P.M. Webster, J. Chem. Soc. Dalton Trans. (1990) 2375.
- [14] W. Clegg, N.A. Compton, R.J. Errington, N.C. Norman, Polyhedron 7 (1988) 2239.
- [15] M. Wieber, H. Hohl, C. Buschka, Z. Anorg. Allg. Chem. 583 (1990) 113.
- [16] M. Gorzellik, B. Nuber, M.L. Ziegler, J. Organomet. Chem. 431 (1992) 171.
- [17] H.J. Breunig, K. Häberle, M. Dräger, T. Severengiz, Angew. Chem. Int. Ed. Engl. 24 (1985) 72.
- [18] G. Becker, H. Freudenblum, C Wittauer, Z. Anorg. Allg. Chem.

492 (1982) 37.

- [19] A.H. Cowley, R.A. Jones, C.M. Nunn, D.L. Westmoreland, Angew. Chem. Int. Ed. Engl. 28 (1989) 1018.
 - [20] P. Panster, W. Malisch, Chem. Ber. 109 (1976) 3842.
 - [21] W. Malisch, M. Kuhn, W. Albert, H. Rossner, Chem. Ber. 113 (1980) 3318.
 - [22] W. Malisch, H. Rossner, K. Keller, R. Janta, J. Organomet. Chem. 133 (1977) C21.
 - [23] M. Nunn, D.B. Sowerby, D.M. Wesolek, J. Organomet. Chem. 251 (1983) C45.
 - [24] Trinh-toan, L.F. Dahl, J. Am. Chem. Soc. 93 (1971) 2654.
 - [25] N.P.C. Walker, D. Stuart, Acta Crystallogr. A 39 (1983) 158.
 - [26] D.J. Watkin, J.R. Carruthers, D.W. Betteridge, CRYSTALS User's Guide, Chemical Crystallography Laboratory, University of Oxford, England, 1985.
 - [27] J.A. Darr, S.R. Drake, M.B. Hursthouse, K.M.A. Malik, Inorg. Chem. 32 (1993) 5704.
 - [28] G.M. Sheldrick, Acta Crystallogr. A 46 (1990) 467.
 - [29] G.M. Sheldrick, SHELXL93 Program for Crystal Structure Refinement, University of Göttingen, Germany, 1993.